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MODELLING OF HEAT AND MASS TRANSFER AROUND SINGLE HOT 
PARTICLE SURROUNDED BY A VAPOR LAYER AND LIQUID* 

A.A. Gubaidullin, I.N. Sannikov, and E.A. Kosheleva 

Tyumen Department of Institute of Theoretical and Applied Mechanics SB RAS, 
625000 Tyumen, Russia 

Introduction 

The investigation of heat and mass transfer process around a single hot particle 
surrounded by vapor layer and liquid is actual due to a study of vapor explosion in the time of 
hard accidents on the nuclear reactors and metallurgy industry. The process of heat and mass 
transfer of vapor bubble at surrounding liquid was investigated well [1]. However, insufficient 
attention was devoted a similarly process in the case of presence of a hot particle in the bubble. 
The models describing this process were proposed in the works [2, 3 and 4]. Unfortunately the 
questionable assumptions were used in the papers [2, 3] that can restricted the field of 
applications proposed ones. The model from the work [4] was developed just for the some 
cases. 

The aim of this work is to fill up the mentioned gaps.  

The basic equations 

Consider the system of equations of model that describe the heat and mass transfer around 
hot particle surrounded by vapor layer and liquid. The equations of heat influx to a particle, 
vapor and liquid can be written as 
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where iρ , iT  ( )lgdi ,,=  are the densities and temperatures of particle, vapor and liquid; jw , 

jc , jλ  ( )ldj ,=  are the radial velocities, the specific heats and the heat conduction 

coefficients of particle and liquid; gpc  is the adiabatic specific heat of vapor; d  and )(tR  are 
the radii of particle and vapor bubble accordingly. The liquid and particle consider 
incompressible. It is supposed that the pressure in vapor gp  is homogeneous in space and the 
dependence of thermal conductivity on temperature is linear: 

0gggg Ta λλ += . 
The vapor mass balance equation is  
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In the case of incompressible liquid we have:  
 22 Rwrw Rll = , (5) 

where Rlw  is the radial velocity of liquid near to a bubble surface. 
We use the ideal gas state equation for vapor in a bubble: 

 gggpg Tcp ρ
γ

γ 1−
= . (6) 

The Clapeyron – Clausius equation relates the pressure in a vapor and the saturation 
temperature sT : 
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In this equations γ ,  and gsρ  are vapor adiabatic exponent, specific heat of vaporization and 
vapor density on the saturation line accordingly. 

The Rayleigh – Lamb equation describes the oscillations of bubble: 
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where lν  and σ  are kinematic viscosity of liquid and surface tension coefficient, ∞p  is 
pressure in liquid far from bubble, j  and Rgw  are intensity of phase transition and velocity of 
vapor on boundary surface. 

The system of equations (1) – (9) is complete. The initial and boundary conditions are 
required to set for posing a problem. The boundary conditions for the equations (1) – (3) are: 
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The boundary conditions (12) on bubble surface describe the phase transition liquid-vapor in a 
quasi-equilibrium approximation. Therefore first boundary condition in (12) is considered as the 
equation for calculation of intensity of phase change j . There is the following requirement for 
velocity of vapor gw : 

 dr = :        0=gw . (14) 
It is supported that initial temperature in a particle, vapor and liquid is linear function. 
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Transformation of equations system  

Similar to [1] we transform the system of equation (1) – (14) to a convenient form for 
numerical simulations. First of all we note that the equation (6) is inconvenient for a calculation 
of pressure in a vapor because the density gρ  and the temperature gT  is depended on spatial 

coordinate r . Besides we have not explicit equation for the calculation of vapor velocity gw . 

The equations for gw  and gp  can be obtained by the substitute of expressed from equation (6) 
vapor density in the equation (4): 
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Then the expression (15) is substituted in the equation of heat influx to the vapor (2). The 
retrieved expression is integrated on r  from d  up to )(tR . The result of these transformations 
is:  
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Repeat again the integration in limits from d  and up to )(tRr <′  and account the condition 
(14) we obtain the expression for the radial velocity of vapor: 
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Here the prime over space coordinate r  is neglected.  
We use new system of coordinates where the surface of bubble is fixed by following 

transforming operators: 
 ),0( dr∈ : t=τ , r=η ; 
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The system of equations (1) – (9) and equations (16) – (17) for gw  and gp  may be 
written in the new coordinates as 
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In these equations the time τ  is renamed as t  and the temperature conduction coefficients of 
particle, vapor and liquid is  
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The boundary conditions (10) – (14) is transformed as 
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We use second order approximation of derivatives on space for the system of equations 
(20) - (28) with boundary conditions (29) – (32). For integration on time we use the explicit 
difference scheme based on Runge – Kutta algorithm with the forth order of accuracy. This 
scheme was proposed in work [5] at the solution of problem of heat and mass transfer of vapor 
bubble in liquid. 

Conclusion 

The model is proposed that describes the heat and mass transfer around hot particle 
surrounded by a vapor layer and liquid. It was supposed that the dependence of thermal 
conductivity in a vapor on temperature is linear, the pressure in vapor is homogeneous in space. 
The liquid-vapor phase transition was taken into account in a quasi-equilibrium approximation. 
The liquid and the hot particle were considered incompressible. 

The procedure of numerical integration of system of equations is developed that is based 
on the explicit difference scheme with the forth order of accuracy on time and second order 
accuracy on space.  
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